Все о тюнинге авто

Уровни организации и функции белков. Строение белковой молекулы. Задания для аудиторной работы

Белки представляют собой полипептиды, молекулярная масса которых превышает 6000-10000 дальтон. Они состоят из большого числа аминокислотных остатков.

В отличие от низкомолекулярных пептидов, белки обладают хорошо развитой трехмерной пространственной структурой, которая стабилизируется различного рода сильными и слабыми взаимодействиями. Различают четыре уровня структурной организации белковой молекулы: первичную, вторичную, третичную и четвертичную структуры.

Первичная структура белка представляет собой последовательность аминокислотных остатков, соединенных между собой пептидными связями.

Впервые предположение о роли пептидных связей в построении белковых молекул было выдвинуто русским биохимиком А. Я. Данилевским, идеи которого легли в основу полипептидной теории строения белков, сформулированной немецким химиком Э. Фишером в 1902 г.

Основу первичной структуры белковой молекулы образует регулярно повторяющийся пептидный остов — NH-CH-CO-, а боковые радикалы аминокислот составляют ее вариабельную часть.

Первичная структура белка прочная, т. к. в основе ее построения лежат ковалентные по характеру пептидные связи, представляющие собой сильные взаимодействия;

Соединяясь между собой в различной последовательности, протеиногенные аминокислоты образуют изомеры. Из трех аминокислот можно построить шесть различных трипептидов. Например, из глицина, аланина и валина - гли-ала-вал, гли-вал-ала, ала-гли-вал, ала-вал-гли, вал-гли-ала и вал-ала-гли. Из четырех аминокислот можно образовать 24 тетрапептида, а из пяти - 120 пентапептидов. Из 20 аминокислот можно построить 2 432 902 008 176 640 000 полипептидов. При этом каждая аминокислота используется в построении рассмотренных полипептидных цепочек только один раз.

Многие природные полипептиды насчитывают в своем составе сотни и даже тысячи аминокислотных остатков, и каждая из 20 протеиногенных аминокислот может встречаться в их составе неоднократно. Поэтому число возможных вариантов полипептидных цепочек бесконечно велико. Однако в природе реализуются далеко не все теоретически возможные варианты аминокислотных последовательностей.

Первым белком, первичная структура которого была расшифрована, является бычий инсулин. Его молекула состоит из двух полипептидных цепочек, одна из которых содержит 21, а другая - 30 аминокислотных остатков. Цепочки соединяются между собой двумя дисульфидными связями. Еще одна дисульфидная связь располагается внутри короткой цепи. Последовательность расположения аминокислотных остатков в молекуле инсулина установил английский биохимик Ф. Сэнгер в 1953 г.

Таким образом, Ф. Сэнгер подтвердил полипептидную теорию строения белковой молекулы Э. Фишера и доказал, что белки - это химические соединения, обладающие определенной структурой, которую можно изобразить с помощью химической формулы. К настоящему времени расшифрованы первичные структуры нескольких тысяч белков.

Химическая природа каждого белка уникальна и тесно связана с его биологической функцией. Способность белка выполнять присущую ему функцию определяется его первичной структурой. Даже небольшие изменения в последовательности аминокислот в белке могут привести к серьезному нарушению в его функционировании, возникновению тяжелого заболевания.

Болезни, связанные с нарушениями первичной структуры белка, получили название молекулярных. К настоящему времени открыто несколько тысяч таких болезней.

Одной из молекулярных болезней является серповидноклеточная анемия, причина которой кроется в нарушении первичной структуры гемоглобина. У людей с врожденной аномалией структуры гемоглобина в полипептидной цепочке, состоящей из 146 аминокислотных остатков, в шестом положении находится валин, тогда как у здоровых людей на этом месте - глутаминовая кислота. Аномальный гемоглобин хуже транспортирует кислород, а эритроциты крови больных имеют серповидную форму. Заболевание проявляется в замедлении развития, общей слабости организма.

Первичная структура белка задана генетически. Это дает возможность организмам одного вида поддерживать постоянство набора белков. Однако у разных видов живых организмов белки, выполняющие одинаковую функцию, не идентичны по первичной структуре - на отдельных участках полипептидной цепи они могут иметь неодинаковые последовательности аминокислот. Такие белки называются гомологичными (греч. «гомология» - согласие).

Исследования кон формации белковых молекул показали, что полипептидные цепи не вытягиваются строго линейно, а определенным образом сворачиваются в пространстве, образуя вторичную структуру.

Вторичная структура белка представляет собой сочетание упорядоченных и аморфных участков полипептидной цепи.

Изучая кристаллические структуры соединений, содержащих амидные группы, американский биохимик Л. Полинг установил, что длина пептидной связи близка к длине двойной связи и составляет 0,1325 нм. Поэтому свободное вращение атомов углерода и азота вокруг пептидной связи затруднено.

Кроме того, атомы пептидных групп и α-углеродные атомы располагаются в полипептидной цепи приблизительно в одной плоскости. В связи с этим повороты в полипептидной цепи могут совершаться только по связям, примыкающим к углеродным атомам.

За счет поворотов пептидных групп вокруг α-углеродных атомов, как установили Л. Полинг и Р. Кори в начале 50-х годов прошлого века, полипептидная цепочка сворачивается в α-спираль и стабилизируется за счет образования максимально возможного числа водородных связей.

При образовании вторичной структуры белковой молекулы водородные связи возникают между атомами пептидных групп, расположенными на соседних витках ос-спирали друг против друга. Атом водорода, соединенный ковалентной связью с атомом азота, имеет некоторый положительный заряд. Атом кислорода, соединенный двойной связью с атомом углерода, имеет некоторый отрицательный заряд. Водородный атом, оказавшись напротив атома кислорода, связывается с ним водородной связью. Водородная связь слабая. Однако за счет образования большого числа этих связей обеспечивается сохранение строго упорядоченной структуры.

Водородные связи всегда направлены параллельно воображаемой оси а-спирали, а радикалы аминокислот - наружу от ее витков. Пептидные группы соединяются между собой водородными связями преимущественно через четыре аминокислотных остатка, так как именно их О-С- и H-N-группы оказываются пространственно сближенными.

А-Спираль является правозакрученной. Если смотреть на нее с торца, со стороны N-конца, то закручивание полипептидной цепочки происходит по часовой стрелке. Установлены параметры а-спирали. Расстояние между соседними витками (шаг спирали) составляет ∅54 нм, а внутренний диаметр спирали - 1,01 нм. Один полный виток спирали включает в себя 3,6 аминокислотных остатка. Полное повторение структуры α-спирали происходит каждые 5 витков, включающих в себя 18 аминокислотных остатков. Этот отрезок α-спирали называется периодом идентичности и составляет в длину 2,7 нм.

Полипептидные цепочки сворачиваются в а-спираль не на всем своем протяжении. Процентное содержание заспирализованных участков в белковой молекуле называется степенью спирализации . Белки существенно различаются по степени спирализации, например: для гемоглобина крови она очень высокая - 75%, для инсулина также довольно высокая - 60%, для альбумина куриного яйца значительно ниже - 45%, а для химотрипсиногена (неактивного предшественника фермента пищеварения) крайне низкая - всего 11%.

Различия в степени спирализации белков связаны с рядом факторов, мешающих регулярному образованию водородных связей между пептидными группами. К нарушению спирализации приводит, в частности, образование остатками цистеина дисульфидных связей, соединяющих различные участки одной или нескольких полипептидных цепей. В области, близкой к остатку иминокислоты пролина, вокруг α-углеродного атома которого невозможно вращение соседних атомов, в полипептидной цепи образуется изгиб.

Ряд протеиногенных аминокислот обладают такими радикалами, которые не позволяют им принимать участие в формировании α-спирали. Эти аминокислоты образуют параллельно расположенные складки, соединенные друг с другом водородными связями. Такой тип регулярного участка полипептидной цепи получил название структуры складчатого слоя, или β-структуры.

В отличие от а-спирали, имеющей стержневую форму, β-структура имеет форму складчатого листа. Она стабилизируется водородными связями, возникающими между пептидными группами, расположенными на соседних отрезках полипептидной цепи. Эти отрезки могут быть направлены либо в одну сторону - тогда образуется параллельная β-структура, либо в противоположные - в этом случае возникает антипараллельная β-структура.

Пептидные группы в β-структуре располагаются в плоскостях складок, а боковые радикалы аминокислот - над и под плоскостями. Расстояние между соседними участками полипептидной цепи в структуре складчатого слоя составляет 0,272 нм, что соответствует длине водородной связи между группами -СО- и -NH-. Сами водородные связи располагаются перпендикулярно направлению структуры складчатого слоя. Содержание β-структуры в различных белках колеблется в широких пределах.

Некоторые участки полипептидных цепочек не имеют какой-либо упорядоченной структуры и представляют собой беспорядочные клубки. Такие участки называются аморфными (греч. «аморфос» - бесформенный). Однако в каждом белке аморфные участки имеют свою фиксированную конформацию. При этом в отличие от относительно жестких участков - α-спирали и β-структуры - аморфные клубки могут сравнительно легко изменять свою конформацию.

Белки различаются по содержанию разных типов вторичной структуры. Например, в структуре гемоглобина обнаружены только α-спирали. во многих ферментах присутствуют различные сочетания как α-спиралей так и β-структур, среди иммуноглобулинов встречаются белки, имеющие только β-структуру. Наконец, встречаются и такие белки, у которых упорядоченные участки присутствуют в незначительном количестве, а большая часть полипептидной цепочки имеет аморфную структуру.

Полипептидные цепочки со сформированной вторичной структурой определенным образом располагаются в пространстве, создавая еще один уровень структурной организации белковой молекулы - третичную структуру.

Третичная структура белка образуется в результате специфической укладки упорядоченных и аморфных участков полипептидной цепи в некотором объеме пространства. Она поддерживается за счет сильных и слабых взаимодействий, возникающих между боковыми радикалами остатков аминокислот. К сильным взаимодействиям относится дисульфидная связь, а к слабым - водородная и ионная связи, а также гидрофобные взаимодействия.

Дисульфидная связь образуется при взаимодействии двух близко расположенных радикалов остатков цистеина, содержащих свободные сульфгидрильные группы.

Дисульфидные мостики могут соединять между собой не только отдельные участки внутри одной полипептидной цепи, но и (при образовании четвертичной структуры белка) различные полипептидные цепочки.

Водородная связь может возникать между боковыми радикалами остатков аминокислот, содержащих ОН-группы, например, между двумя остатками серина.

Кроме радикалов остатков серина, подобным образом водородные связи могут образовывать радикалы остатков треонина и тирозина.

В формировании третичной структуры белковой молекулы также принимают участие множество водородных связей, возникающих между боковыми радикалами, например: тирозина и глутаминовой кислоты, аспарагина и серина, лизина и глутамина и др.

Ионные связи возникают при сближении отрицательно заряженных радикалов остатков кислых аминокислот - аспарагиновой или глутаминовой - с положительно заряженными радикалами остатков основных аминокислот - лизина, аргинина или гистидина. Ионная связь между радикалами остатков аспарагиновой кислоты и лизина.

Гидрофобные взаимодействия возникают в воде, вследствие притяжения друг к другу неполярных радикалов остатков аминокислот. К аминокислотам с неполярными радикалами относятся, например, аланин, валин, лейцин, изолейцин, фенилаланин, метионин. Гидрофобное взаимодействие между боковыми радикалами остатков валина и аланина.

Чтобы избежать контакта с водой, неполярные радикалы остатков аминокислот стремятся собраться вместе внутри белковой молекулы. Белок сворачивается в компактное тело - глобулу (лат. «globulus» - шарик). Внутри глобулы образуется гидрофобное ядро, а снаружи нее находятся полярные радикалы остатков аминокислот, которые взаимодействуют с водой. Полярными радикалами обладают, например, кислые и основные аминокислоты, серии, треонин, тирозин, аспарагин, глутамин.

Таким образом, каждая белковая глобула окружена гидратной оболочкой, представленной так называемой «водяной шубой», включающей также структурированные молекулы воды, способные удерживать на поверхности глобулы до половины имеющихся в полипептидной цепочке гидрофобных радикалов. Этим обусловлена растворимость белка.

Благодаря множеству межрадикальных взаимодействий, отдельные участки белковой молекулы оказываются пространственно сближенными и зафиксированными относительно друг друга. В ходе образования третичной структуры белка формируется его активный центр. В результате белок приобретает способность выполнять свою биологическую функцию.

Первым белком, третичная структура которого была установлена, является миоглобин.

Третичные глобулы могут взаимодействовать между собой так, что возникает единая молекула. Такие глобулы называют субъединицами, а их объединение - четвертичной структурой белковой молекулы.

Четвертичная структура белка может строиться из различного числа субъединиц, удерживаемых вместе, главным образом, за счет слабых взаимодействий. Она присуща многим белкам.

Субъединицы, характерным образом расположенные в пространстве относительно друг друга, образуют олигомерный (мультимерный) комплекс. Способность белков к образованию таких структур позволяет объединять в единое целое несколько активных центров и взаимосвязанных функций, что очень важно для обеспечения протекания в клетке сложных обменных процессов.

Четвертичные структуры белков могут строиться из 2, 4, 6, 8,10, 12, 24 и более субъединиц и редко - из нечетного их числа. Например, четвертичную структуру гемоглобина образуют четыре попарно одинаковых субъединицы.

Четвертичная структура белковой молекулы является такой же уникальной, как и другие ее структуры. При этом вся трехмерная упаковка полипептидной цепи в пространстве определяется ее первичной структурой. Специфическая пространственная структура (конформация), в которой белковые молекулы обладают биологической активностью, называется нативиой (лат. nativus - врожденный).

Белки - это высокомолекулярные биополимерные органические соединения, мономерами которых являются аминокислоты. Белки были выделены в отдельный класс биологических молекул в XVIII в. в результате работ французского химика А. де Фуркруа. Впервые описал белки и предложил название протеины , что в современном понимании означает белок, голландский химик Е. Я. Берцелиус. Первое выделение белка (в виде клейковины) из пшеничной муки было осуществлено Я. Беккари. Особенностью исследований белков начале XXI в. одновременное получение данных о белковый состав целых клеток, тканей или организмов, чем занимается отдельная наука - протеомика .

Молекулярная масса белков от 5000 до 150000 Да и больше.

Одним из крупнейших единичных белков является титин (компонент саркомеров мышц), содержащий более 29 тыс. Аминокислот и имеет молекулярную массу 3000000 Да. Но самые большие по массе белки (более 40000000 Да) характерны для вирусов.

Химический состав . Состоят белки с С, Η, О, N ; в некоторых белках является S , часть белков образует комплексы с другими молекулами, которые содержат Р, Fe, Zn, Сu . Белки являются биополимеры из 20 различных мономеров - природных основных аминокислот. Белки могут образовывать интерполимерных комплексы с углеводами, липидами, нуклеиновыми кислотами, фосфорной кислотой и др.

Физико-химические свойства. Благодаря наличию свободных аминогрупп и карбоксильных групп белки характеризуются всеми свойствами кислот и оснований (амфотерные свойства ). Диссоциация аминокислот и карбоксильных белковых групп обусловливает электрофоретических подвижность белков. При низких значениях pH белкового раствора в нем преобладают положительно заряженные аминогруппы, поэтому белки находятся в катионной форме. При высоких значениях pH преобладают отрицательно заряженные СООН-группы и белки будут находиться в анионной форме. При некотором промежуточном значении pH аминогруппы и карбоксильные группы могут взаимодействовать между собой, тогда сумма зарядов равна нулю, и белки остаются неподвижными в электрическом поле (электрические свойства ). Высокая молекулярная масса оказывает белковым растворам свойств, характерных для коллоидных систем, а именно: способность к образованию гелей, высокая вязкость, малая скорость диффузии, высокая степень набухания, благодаря чему они связывают около 80-90% всей воды в организме (коллоидные свойства ). Распад белков происходит под действием кислот, щелочей или специфических ферментов-гидролаз, которые расщепляют их до пептидов и аминокислот. Синтез осуществляется с аминокислот с матричным принципом с помощью информационной РНК. Под влиянием различных чиникив белки могут сворачиваться и выпадать в осадок, теряя природные свойства. Отсутствие заряда и гидратной оболочки способствует сближению белковых молекул, их слипанию и выпадению в осадок. Это явление называется коагуляцией, она может быть обратной и необратимой. Необратимую коагуляцию можно рассматривать как денатурации белков. Денатурация - это процесс нарушения естественной структуры белков. При этом уменьшается растворимость белка, меняются форма и размеры молекул и др. Процесс денатурации является обратимым, то есть возвращение нормальных условиях сопровождается восста-

нием природной структуры белка. Такой процесс называется ренатурацией . Отсюда следует, что особенности белка определяются его первичной структурой. А вот процесс разрушения первичной структуры белков всегда необратим, он называется деструкцией . Свойства белков зависят от структуры, состава и последовательности расположения аминокислот.

Структура белков. Молекулы белков являются линейными полимерами, состоящие из аминокислот. Кроме последовательности аминокислот полипептидной цепи (первичная структура), для функционирования белков крайне важна трехмерная структура (вторичная третичная и четвертичная), которая содержится в результате взаимодействия структур ниже уровней и формируется в процессе свертывания белков. Трехмерная структура белков в нормальных природных условий, при которых белки выполняют свои биологические функции, называется нашивными состоянию белка, а сама структура - нативной конформацией Выделяют четыре уровня структуры белков.

Уровни организации белковых молекул

Первичная структура кодируется соответствующим геном, является специфической для каждого отдельного белка и в наибольшей степени определяет свойства сформированного белка. Вторичная структура представляет собой форму спирали (α-структуру) или структуру складчатого листа (β-конформация) и является термодинамически устойчивым состоянием полипептидной цепи и простой структурой конформации биомолекул. Примером белков с вторичной стуктуре в виде спирали являются белки-кератины (образуют волосы, ногти, перья и т.д.) и в виде складчатого листа - фиброин (белок шелка). Во вторичной структуре α-спиральные участки часто чередуются с линейными. Третичная структура возникает автоматически в результате взаимодействия аминокислотных остатков с молекулами воды. При этом гидрофобные радикалы "втягиваются" внутрь белковой молекулы, а гидрофильные группы ориентируются в сторону растворителя. Таким образом формируется компактная молекула белка, внутри которой практически отсутствуют молекулы воды. К белкам с третичной структурой относят миоглобин. Четвертичная структура возникает в результате сочетания нескольких субъединиц (протомеры ), что вместе выполняют общую

функцию. Такое сочетание называется белковым комплексом (мультимера , или эпимер ). Типичными белками четвертичной структуры является гемоглобин, СТМ, некоторые ферменты.

Конечная структура бывает очень сложной, а процесс ее принятия новосинтезированные по ли пептид ним цепочкой требует некоторого времени. Процесс принятия белком структуры называется свертыванием, или Фолдинг. Многие белки не способны завершить свертывания самостоятельно и достичь нативного состояния, часто через взаимодействие с другими белками клетки. Такие белки требуют внешней помощи от белков специального класса - молекулярных шаперонов. Большинство белков приобретает правильную конформации только в определенных условиях среды. При изменении этих условий белок денатурирует, меняя свою конформацию. Факторами, которые вызывают изменение конформации белков, является нагревание, излучение, сильные кислоты, сильные основания, концентрированные соли, тяжелые металлы, органические растворители и тому подобное.

Виды химических связей в белках. Аминокислоты способны образовывать ряд химических связей (пептидные, дисульфидные, водородные, ионные, гидрофобные) с различными функциональными группами, и это их свойство очень важно для структуры и функций белков.

Пептидный связь - это ковалентная азот-карбоновый полярный связь, которая образуется при взаимодействии NH 2 одной аминокислоты с СООН другой с выделением воды. Этот кислотоамидний связь (-CO-NH-) является основным химическим связью белковых молекул и определяет их первичную структуру и конформацию. Соединение, образующееся в результате конденсации двух аминокислот, является дипептид. На одном конце этой молекулы расположена аминогруппа, на другом - свободная карбоксильная. Благодаря этому дипептид может присоединять к себе другие аминокислоты.

Дисульфидная связь - это ковалентная полярный связь, которая образуется при взаимодействии сульфгидрильных групп (-SH ) радикалов серосодержащих аминокислот цистеина. Эта связь (-S-S-) может возникать как между различными участками одной полипептидной цепи, так и между различными цепями, определяя особенности белковых молекул. Устойчивость многих белков в значительной мере обусловлена количеством именно этих связей, как бы "прошивают" молекулы, придавая им прочности, нерастворимости (например, в коллагена кожи, кератина волос, шерсти).

Водородная связь - это полярный связь, возникает при взаимодействии электроположительного водорода с электроотрицательным кислорода в составе гидроксильной, карбоксильной и аминной групп разных аминокислот. Эти связи (-О-Н) гораздо слабее, чем пептидные, дисульфидные и ионные, но в силу своего количества (возникают между группами, которых больше всего в молекулах белков) они приобретают очень большое значение в стабилизации структуры белковых молекул.

Ионный связь - это электростатический полярный связь, возникающая между ионизированной положительно заряженной аминогруппой одной й аминокислоты и ионизированной отрицательно заряженной карбоксильной группой другой аминокислоты. Этот солевой связь (-СОО - HN 3+ -) может объединять как витки одного и более полипептидных цепей в белках третичной структуры, так и витки различных цепей в белках четвертичной структуры. В водной среде ионные связи значительно слабее, чем пептидные, и могут разрываться при изменении pH.

Гидрофобные взаимодействия - это неполярная связь между радикалами аминокислот, которые не несут электрического заряда и не растворяются в воде. Сближение этих радикалов обусловлено характером взаимодействия гидрофобных групп (-СН3, -С2Н5 и т. Д.) С водой. Эти связи (-R-R-) еще слабее, чем водородные, они поддерживают третичную и четвертичную структуру белков.

БИОЛОГИЯ + Гемомоглобин (от греч. Hаита - кровь и "лат. Globus - шар ) - сложный железосодержащий белок эритроцитов животных и человека; способен связываться с кислородом, обеспечивая его перенос в ткани. Кроме того, гемоглобин способен связывать в тканях небольшое количество сО, и освобождать его в лёгких. Гемоглобин с сложным белком класса хромопротеидов и содержит 1 ) белковую часть - глобин, которая состоит из четырех протомеры - двух идентичных а-цепей и двух идентичных β-цепей, 2 ) небелковую часть - гем, которая представлена четырьмя простетическими группами с координационным центром в виде Fe 2+ . Объединяются субъединицы водородными, ионными связями, но основной вклад в это взаимодействие вносят гидрофобные взаимодействия. Нормальным содержанием гемоглобина в крови человека вважасться: у мужчин - 130-170 г / л, у женщин - 120-150 г / л, у детей - 120-140 г / л. Гемоглобин высоко токсичен при попадании значительного его количества из эритроцитов в плазму крови (например, при переливании несовместимой крови ) . Учитывая высокую токсичность свободного гемоглобина, в организме существуют специальные системы для его связывания и обезвреживания. В частности, одним из компонентов системы обезвреживания гемоглобина является особый плазменный белок гаптоглобин, специфически связывает свободный глобин и глобин в составе гемоглобина.

Это биополимеры, мономерами которых являются аминокислоты.

Аминокислоты представляют собой низкомолекулярные органические соединения, содержащие карбоксильную (-СООН) и аминную (-NH 2) группы, которые связаны с одним и тем же атомом углерода. К атому углерода присоединяется боковая цепь - какой-либо радикал, придающий каждой аминокислоте определенные свойства.

У большей части аминокислот имеется одна карбоксильная группа и одна аминогруппа; эти аминокислоты называются нейтральными . Существуют, однако, и основные аминокислоты - с более чем одной аминогруппой, а также кислые аминокислоты - с более чем одной карбоксильной группой.

Известно около 200 аминокислот, встречающихся в живых организмах, однако только 20 из них входят в состав белков. Это так называемые основные или протеиногенные аминокислоты.

В зависимости от радикала основные аминокислоты делят на 3 группы:

  1. Неполярные (аланин, метионин, валин, пролин, лейцин, изолейцин, триптофан, фенилаланин);
  2. Полярные незаряженные (аспарагин, глутамин, серин, глицин, тирозин, треонин, цистеин);
  3. Заряженные (аргинин, гистидин, лизин - положительно; аспарагиновая и глутаминовая кислота - отрицательно).

Боковые цепи аминокислот (радикал) могут быть гидрофобными и гидрофильными и придают белкам соответствующие свойства.

У растений все необходимые аминокислоты синтезируются из первичных продуктов фотосинтеза. Человек и животные не способны синтезировать ряд протеиногенных аминокислот и должны получать их в готовом виде вместе с пищей. Такие аминокислоты называются незаменимыми. К ним относятся лизин, валин, лейцин, изолейцин, треонин, фенилаланин, триптофан, метионин; аргинин и гистидин - незаменимые для детей.

В растворе аминокислоты могут выступать в роли как кислот, так и оснований, т. е. они являются амфотерными соединениями. Карбоксильная группа (-СООН) способна отдавать протон, функционируя как кислота, а аминная (-NH2) принимать протон, проявляя таким образом свойства основания.

Аминогруппа одной аминокислоты способна вступать в реакцию с карбоксильной группой другой аминокислоты. Образующаяся при этом молекула представляет собой дипептид , а связь -СО-NH- называется пептидной связью.

На одном конце молекулы дипептида находится свободная аминогруппа, а на другом - свободная карбоксильная группа. Благодаря этому дипептид может присоединять к себя другие аминокислоты, образуя олигопептиды. Если таким образом соединяется много аминокислот (более 10), то образуется полипептид .

Пептиды играют важную роль в организме. Многие алигопептиды являются гормонами. Таковы окситоцин, вазопрессин, тиролиберин, тиреотропин и др. К олигопептидам относится также брадикидин (пептид боли) и некоторые опиаты («естественные наркотики» человека), выполняющие функцию обезболивания. Принятие наркотиков разрушает опиатную систему организма, поэтому наркоман без дозы наркотиков испытывает 1 сильную боль - «ломку», которая в норме снимается опиатами.

К олигопептидам относятся некоторые антибиотики (например, грамицидин S).

Многие гормоны (инсулин, адренокортикотропный гормон и др.), антибиотики (например, грамицидин А), токсины (например, дифтерийный токсин) являются полипептидами.

Белки представляют собой полипептиды, в молекулу которых входит от 50 до нескольких тысяч аминокислот с молекулярной массой свыше 10 000.

Каждому белку свойственна в определенной среде своя особая пространственная структура. При характеристике пространственной (трехмерной) структуры выделяют четыре уровня организации молекул белков.

Первичная структура - последовательность аминокислот в полипептид ной цепи. Первичная структура специфична для каждого белка и определяется генетической информацией, т.е. зависит от последовательности нуклеотидов в участке молекулы ДНК, кодирующем данный белок. От первичной структуры зависят все свойства и функции белков. Замена одной единственной аминокислоты в составе молекул белка или изменение их расположения обычно влечет за собой изменение функции белка. Так как в состав белков входит 20 видов аминокислот, число вариантов их комбинаций в пол и пептидной цепи поистине безгранично, что обеспечивает огромное количество видов белков в живых клетках.

В живых клетках молекулы белков или отдельные их участки представляют собой не вытянутую цепь, а скручены в спираль, напоминающую растянутую пружину (это так называемая α-спираль) или сложены в складчатый слой (β-слой). Вторичная структура возникает в результате образования водородных связей между -СО- и -NН 2 -группами двух пептидных связей внутри одной полипептидной цепи (спиральная конфигурация) или между двумя полипептидными цепями (складчатые слои).

Полностью α-спиральную конфигурацию имеет белок кератин. Это структурный белок волос, шерсти, ногтей, когтей, клюва, перьев и рогов. Спиральная вторичная структура характерна, помимо кератина, для таких фибриллярных (нитевидных) белков, как миозин, фибриноген, коллаген.

У большинства белков спиральные и неспиральные участки полипептидной цепи складываются в трехмерное образование шаровидной формы - глобулу (характерна для глобулярных белков). Глобула определенной конфигурации является третичной структурой белка. Третичная структура стабилизируется ионными, водородными связями, ковалентными дисульфидными связями (которые образуются между атомами серы, входящими в состав цистеина), а также гидрофобными взаимодействиями. Наиболее важными в возникновении третичной структуры являются гидрофобные взаимодействия; белок при этом свертывается таким образом, что его гидрофобные боковые цепи скрыты внутри молекулы, т. е. защищены от соприкосновения с водой, а гидрофильные боковые цепи, наоборот, выставлены наружу.

Многие белки с особо сложным строением состоят из нескольких полипептидных цепей, удерживаемых в молекуле вместе за счет гидрофобных взаимодействий, а также при помощи водородных и ионных связей - возникает четвертичная структура . Такая структура имеется, например, у глобулярного белка гемоглобина. Его молекула состоит из четырех отдельных полипептидных субъединиц (протомеров), находящихся в третичной структуре, и небелковой части - гема. Только в такой структуру гемоглобин способен выполнять свою транспортную функцию.

Под влиянием различных химических и физических факторов (обработка спиртом, ацетоном, кислотами, щелочами, высокой температурой, облучением, высоким давлением и т. д.) происходит изменение третичной и четвертичной структуры белка вследствие разрыва водородных и ионных связей. Процесс нарушения нативной (естественной) структуры белка называется денатурацией . При этом наблюдается уменьшение растворимости белка, изменение формы и размеров молекул, потеря ферментативной активности и т. д. Процесс денатурации иногда обратим, т. е. возвращение нормальных условий среды может сопровождаться самопроизвольным восстановлением естественной структуры белка. Такой процесс называется ренатурацией. Отсюда следует, что все особенности строения и функционирования макромолекулы белка определяются его первичной структурой.

По химическому составу выделяют белки простые и сложные. К простым относятся белки, состоящие только из аминокислот, а к сложным - содержащие белковую часть и небелковую (простатическую) - ионы металлов, углеводы, липиды и др. Простыми белками являются сывороточный альбумин крови, иммуноглобулин (антитела), фибрин, некоторые ферменты (трипсин) и др. Сложными белками являются все протеолипиды и гликопротеиды, гемоглобин, большинство ферментов и т.д.

Функции белков

Структурная.

Белки входят в состав клеточных мембран и органелл клетки. Стенки кровеносных сосудов, хрящи, сухожилия, волосы, ногти, когти у высших животных состоят преимущественно из белков.

Каталитическая (ферментативная).

Белки-ферменты катализируют протекание всех химических реакций в организме. Они обеспечивают расщепление питательных веществ в пищеварительном тракте, фиксацию углерода при фотосинтезе, реакции матричного синтеза и т. п.

Транспортная.

Белки способны присоединять и переносить различные вещества. Альбумины крови транспортируют жирные кислоты, глобулины - ионы металлов и гормоны. Гемоглобин переносит кислород и углекислый газ.

Молекулы белков, входящие в состав плазматической мембраны, принимают участие в транспорте веществ в клетку и из нее.

Защитная.

Ее выполняют иммуноглобулины (антитела) крови, обеспечивающие иммунную защиту организма. Фибриноген и тромбин участвуют в свертывании крови и предотвращают кровотечение.

Сократительная.

Обеспечивается движением относительно друг друга нитей белков актина и миозина в мышцах и внутри клеток. Скольжение микротрубочек, построенных из белка тубулина, объясняется движение ресничек и жгутиков.

Регуляторная.

Многие гормоны являются олигопептидами или белками, например: инсулин, глюкагон, аденокортикотропный гормон и др.

Рецепторная.

Некоторые белки, встроенные в клеточную мембрану, способны изменить свою структуру на действие внешней среды. Так происходят прием сигналов из внешней среды и передача информации в клетку. Примером может служить фитохром - светочувствительный белок, регулирующий фотопериодическую реакцию растений, и опсин - составная часть родопсина , пигмента, находящегося в клетках сетчатки глаза.

Выделяют четыре уровня структурной организации белков: первичный, вторичный, третичный и четвертичный. Каждый уровень имеет свои особенности.

Первичной структурой белков называется линейная полипептидная цепь из аминокислот, соединенных между собой пептидными связями. Первичная структура - простейший уровень структурной организации белковой молекулы. Высокую стабильность ей придают ковалентные пептидные связи между α-аминогруппой одной аминокислоты и α-карбоксильной группой другой аминокислоты [показать] .

Если в образовании пептидной связи участвует иминогруппа пролина или гидроксипролина, то она имеет другой вид [показать] .

При образовании пептидных связей в клетках сначала активируется карбоксильная группа одной аминокислоты, а затем она соединяется с аминогруппой другой. Примерно так же проводят лабораторный синтез полипептидов.

Пептидная связь является повторяющимся фрагментом полипептидной цепи. Она имеет ряд особенностей, которые влияют не только на форму первичной структуры, но и на высшие уровни организации полипептидной цепи:

  • копланарность - все атомы, входящие в пептидную группу, находятся в одной плоскости;
  • способность существовать в двух резонансных формах (кето- или енольной форме);
  • транс-положение заместителей по отношению к С-N-связи;
  • способность к образованию водородных связей, причем каждая из пептидных групп может образовывать две водородные связи с другими группами, в том числе и пептидными.

Исключение составляют пептидные группы с участием аминогруппы пролина или гидроксипролина. Они способны образовывать только одну водородную связь (см. выше). Это сказывается на формировании вторичной структуры белка. Полипептидная цепь на участке, где находится пролин или гидроксипролин, легко изгибается, так как не удерживается, как обычно, второй водородной связью.

Номенклатура пептидов и полипептидов . Название пептидов складывается из названий входящих в них аминокислот. Две аминокислоты дают дипептид, три - трипептид, четыре - тетрапептид и т. д. Каждый пептид или полипептидная цепь любой длины имеет N-концевую аминокислоту, содержащую свободную аминогруппу, и С-концевую аминокислоту, содержащую свободную карбоксильную группу. Называя полипептиды, перечисляют последовательно все аминокислоты, начиная с N-концевой, заменяя в их названиях, кроме С-концевой, суффикс -ин на -ил (так как аминокислоты в пептидах имеют уже не карбоксильную группу, а карбонильную). Например, название изображенного на рис. 1 трипептида - лейцил фенилаланил треонин .

Особенности первичной структуры белка . В остове полипептидной цепи чередуются жесткие структуры (плоские пептидные группы) с относительно подвижными участками (-СНR), которые способны вращаться вокруг связей. Такие особенности строения полипептидной цепи влияют на укладку ее в пространстве.

Вторичная структура представляет собой способ укладки полипептидной цепи в упорядоченную структуру благодаря образованию водородных связей между пептидными группами одной цепи или смежными полипептидными цепями. По конфигурации вторичные структуры делятся на спиральные (α-спираль) и слоисто-складчатые (β-структура и кросс-β-форма).

α-Спираль . Это разновидность вторичной структуры белка, имеющая вид регулярной спирали, образующейся благодаря межпептидным водородным связям в пределах одной полипептидной цепи. Модель строения α-спирали (рис. 2), учитывающая все свойства пептидной связи, была предложена Полингом и Кори. Основные особенности α-спирали:

  • спиральная конфигурация полипептидной цепи, имеющая винтовую симметрию;
  • образование водородных связей между пептидными группами каждого первого и четвертого аминокислотных остатков;
  • регулярность витков спирали;
  • равнозначность всех аминокислотных остатков в α-спирали независимо от строения их боковых радикалов;
  • боковые радикалы аминокислот не участвуют в образовании α-спирали.

Внешне α-спираль похожа на слегка растянутую спираль электрической плитки. Регулярность водородных связей между первой и четвертой пептидными группами определяет и регулярность витков полипептидной цепи. Высота одного витка, или шаг α-спирали, равна 0,54 нм; в него входит 3,6 аминокислотных остатка, т. е. каждый аминокислотный остаток перемещается вдоль оси (высота одного аминокислотного остатка) на 0,15 нм (0,54:3,6 = 0,15 нм), что и позволяет говорить о равнозначности всех аминокислотных остатков в α-спирали. Период регулярности α-спирали равен 5 виткам или 18 аминокислотным остаткам; длина одного периода составляет 2,7 нм. Рис. 3. Модель а-спирали Полинга-Кори

β-Структура . Это разновидность вторичной структуры, которая имеет слабо изогнутую конфигурацию полипептидной цепи и формируется с помощью межпептидных водородных связей в пределах отдельных участков одной полипептидной цепи или смежных полипептидных цепей. Ее называют также слоисто-складчатой структурой. Имеются разновидности β-структур. Ограниченные слоистые участки, образуемые одной полипептидной цепью белка, называют кросс-β-формой (короткая β-структура). Водородные связи в кросс-β-форме образуются между пептидными группами петель полипептидной цепи. Другой тип - полная β-структура - характерен для всей полипептидной цепочки, которая имеет вытянутую форму и удерживается межпептидными водородными связями между смежными параллельными полипептидными цепями (рис. 3). Эта структура напоминает меха аккордеона. Причем возможны варианты β-структур: они могут быть образованы параллельными цепями (N-концы полипептидных цепей направлены в одну и ту же сторону) и антипараллельными (N-концы направлены в разные стороны). Боковые радикалы одного слоя помещаются между боковыми радикалами другого слоя.

В белках возможны переходы от α-структур к β-структурам и обратно вследствие перестройки водородных связей. Вместо регулярных межпептидных водородных связей вдоль цепи (благодаря им полипептидная цепь скручивается в спираль) происходит раскручивание спирализованных участков и замыкание водородных связей между вытянутыми фрагментами полипептидных цепей. Такой переход обнаружен в кератине - белке волос. При мытье волос щелочными моющими средствами легко разрушается спиральная структура β-кератина и он переходит в α-кератин (вьющиеся волосы распрямляются).

Разрушение регулярных вторичных структур белков (α-спирали и β-структур) по аналогии с плавлением кристалла называют "плавлением" полипептидов. При этом водородные связи рвутся, и полипептидные цепи принимают форму беспорядочного клубка. Следовательно, стабильность вторичных структур определяется межпептидными водородными связями. Остальные типы связей почти не принимают в этом участия, за исключением дисульфидных связей вдоль полипептидной цепи в местах расположения остатков цистеина. Короткие пептиды благодаря дисульфидным связям замыкаются в циклы. Во многих белках одновременно имеются α-спиральные участки и β-структуры. Природных белков, состоящих на 100% из α-спирали, почти не бывает (исключение составляет парамиозин - мышечный белок, на 96-100% представляющий собой α-спираль), тогда как у синтетических полипептидов 100%-ная спирализация.

Другие белки имеют неодинаковую степень спирализации. Высокая частота α-спиральных структур наблюдается у парамиозина, миоглобина, гемоглобина. Напротив, у трипсина, рибонуклеазы значительная часть полипептидной цепи укладывается в слоистые β-структуры. Белки опорных тканей: кератин (белок волос, шерсти), коллаген (белок сухожилий, кожи), фиброин (белок натурального шелка) имеют β-конфигурацию полипептидных цепей. Разная степень спирализации полипептидных цепей белков говорит о том, что, очевидно, имеются силы, частично нарушающие спирализацию или "ломающие" регулярную укладку полипептидной цепи. Причиной этого является более компактная укладка полипептидной цепи белка в определенном объеме, т. е. в третичную структуру.

Третичная структура белка

Третичной структурой белка называется способ укладки полипептидной цепи в пространстве. По форме третичной структуры белки делятся в основном на глобулярные и фибриллярные. Глобулярные белки чаще всего имеют эллипсовидную форму, а фибриллярные (нитевидные) белки - вытянутую (форма палочки, веретена).

Однако конфигурация третичной структуры белков еще не дает основания думать, что фибриллярные белки имеют только β-структуру, а глобулярные α-спиральные. Есть фибриллярные белки, имеющие спиральную, а не слоисто-складчатую вторичную структуру. Например, α-кератин и парамиозин (белок запирательной мышцы моллюсков), тропомиозины (белки скелетных мышц) относятся к фибриллярным белкам (имеют палочковидную форму), а вторичная структура у них - α-спираль; напротив, в глобулярных белках может быть большое количество β-структур.

Спирализация линейной полипептидной цепи уменьшает ее размеры примерно в 4 раза; а укладка в третичную структуру делает ее в десятки раз более компактной, чем исходная цепь.

Связи, стабилизирующие третичную структуру белка . В стабилизации третичной структуры играют роль связи между боковыми радикалами аминокислот. Эти связи можно разделить на:

  • сильные (ковалентные) [показать] .

    К ковалентным связям относятся дисульфидные связи (-S-S-) между боковыми радикалами цистеинов, находящихся в разных участках полипептидной цепи; изопептидные, или псевдопептидные, - между аминогруппами боковых радикалов лизина, аргинина, а не α-аминогруппами, и СООН-группами боковых радикалов аспарагиновой, глутаминовой и аминолимонной кислот, а не α-карбоксильными группами аминокислот. Отсюда и название этого типа связи - подобная пептидной. Редко встречается эфирная связь, образуемая СООН-группой дикарбоновых аминокислот (аспарагиновой, глутаминовой) и ОН-группой гидроксиаминокислот (серина, треонина).

  • слабые (полярные и ван-дер-ваальсовы) [показать] .

    К полярным связям относятся водородные и ионные. Водородные связи, как обычно, возникают между группой -NН 2 , - ОН или -SН бокового радикала одной аминокислоты и карбоксильной группой другой. Ионные, или электростатические, связи образуются при контакте заряженных групп боковых радикалов -NН + 3 (лизина, аргинина, гистидина) и -СОО - (аспарагиновой и глутаминовой кислот).

    Неполярные, или ван-дер-ваальсовы, связи образуются между углеводородными радикалами аминокислот. Гидрофобные радикалы аминокислот аланина, валина, изолейцина, метионина, фенилаланина в водной среде взаимодействуют друг с другом. Слабые ван-дер-ваальсовы связи способствуют формированию гидрофобного ядра из неполярных радикалов внутри белковой глобулы. Чем больше неполярных аминокислот, тем большую роль в укладке полипептидной цепи играют ван-дер-ваальсовы связи.

Многочисленные связи между боковыми радикалами аминокислот определяют пространственную конфигурацию белковой молекулы.

Особенности организации третичной структуры белка . Конформация третичной структуры полипептидной цепи определяется свойствами боковых радикалов входящих в нее аминокислот (которые не оказывают заметного влияния на формирование первичной и вторичной структур) и микроокружением, т. е. средой. При укладке полипептидная цепь белка стремится принять энергетически выгодную форму, характеризующуюся минимумом свободной энергии. Поэтому неполярные R-группы, "избегая" воды, образуют как бы внутреннюю часть третичной структуры белка, где расположена основная часть гидрофобных остатков полипептидной цепи. В центре белковой глобулы почти нет молекул воды. Полярные (гидрофильные) R-группы аминокислоты располагаются снаружи этого гидрофобного ядра и окружены молекулами воды. Полипептидная цепь причудливо изгибается в трехмерном пространстве. При ее изгибах нарушается вторичная спиральная конформация. "Ломается" цепь в слабых точках, где находятся пролин или гидроксипролин, поскольку эти аминокислоты более подвижны в цепи, образуя только одну водородную связь с другими пептидными группами. Другим местом изгиба является глицин, R-группа которого мала (водород). Поэтому R-группы других аминокислот при укладке стремятся занять свободное пространство в месте нахождения глицина. Ряд аминокислот - аланин, лейцин, глутамат, гистидин - способствуют сохранению устойчивых спиральных структур в белке, а такие, как метионин, валин, изолейцин, аспарагиновая кислота, благоприятствуют образованию β-структур. В молекуле белка с третичной конфигурацией встречаются участки в виде α-спиралей (спирализованные), β-структур (слоистые) и беспорядочного клубка. Только правильная пространственная укладка белка делает его активным; нарушение ее приводит к изменению свойств белка и потере биологической активности.

Четвертичная структура белка

Белки, состоящие из одной полипептидной цепи, имеют только третичную структуру. К ним относятся миоглобин - белок мышечной ткани, участвующий в связывании кислорода, ряд ферментов (лизоцим, пепсин, трипсин и т. д.). Однако некоторые белки построены из нескольких полипептидных цепей, каждая из которых имеет третичную структуру. Для таких белков введено понятие четвертичной структуры, которая представляет собой организацию нескольких полипептидных цепей с третичной структурой в единую функциональную молекулу белка. Такой белок с четвертичной структурой называется олигомером, а его полипептидные цепи с третичной структурой - протомерами или субъединицами (рис. 4).

При четвертичном уровне организации белки сохраняют основную конфигурацию третичной структуры (глобулярную или фибриллярную). Например, гемоглобин - белок, имеющий четвертичную структуру, состоит из четырех субъединиц. Каждая из субъединиц - глобулярный белок и в целом гемоглобин тоже имеет глобулярную конфигурацию. Белки волос и шерсти - кератины, относящиеся по третичной структуре к фибриллярным белкам, имеют фибриллярную конформацию и четвертичную структуру.

Стабилизация четвертичной структуры белков . Все белки, у которых обнаружена четвертичная структура, выделены в виде индивидуальных макромолекул, не распадающихся на субъединицы. Контакты между поверхностями субъединиц возможны только за счет полярных групп аминокислотных остатков, поскольку при формировании третичной структуры каждой из полипептидных цепей боковые радикалы неполярных аминокислот (составляющих большую часть всех протеиногенных аминокислот) спрятаны внутри субъединицы. Между их полярными группами образуются многочисленные ионные (солевые), водородные, а в некоторых случаях и дисульфидные связи, которые прочно удерживают субъединицы в виде организованного комплекса. Применение веществ, разрывающих водородные связи, или веществ, восстанавливающих дисульфидные мостики, вызывает дезагрегацию протомеров и разрушение четвертичной структуры белка. В табл. 1 суммированы данные о связях, стабилизирующих разные уровни организации белковой молекулы [показать] .

Таблица 1. Характеристика связей, участвующих в структурной организации белков
Уровень организации Типы связей (по прочности) Разновидность связи
Первичная (линейная полипeптидная цепь) Ковалентные (сильные) Пептидная - между α-амино- и α-карбоксильными группами аминокислот
Вторичная (α-спираль, β-структуры) Слабые Водородные - между пептидными группами (каждой первой и четвертой) одной полипептидной цепи или между пептидными группами смежных полипептидных цепей
Ковалентные (сильные) Дисульфидные - дисульфидные петли в пределах линейного участка полипептидной цепи
Третичная (глобулярная, фибриллярная) Ковалентные (сильные) Дисульфидные, изопептидные, сложноэфирные - между боковыми радикалами аминокислот разных участков полипептидной цепи
Слабые Водородные - между боковыми радикалами аминокислот разных участков полипептидной цепи

Ионные (солевые) - между противоположно заряженными группами боковых радикалов аминокислот полипептидной цепи

Ван-дер-ваальсовы - между неполярными боковыми радикалами аминокислот полипептидной цепи

Четвертичная (глобулярная, фибриллярная) Слабые Ионные - между противоположно заряженными группами боковых радикалов аминокислот каждой из субъединиц

Водородные - между боковыми радикалами аминокислотных остатков, расположенными на поверхности контактирующих участков субъединиц

Ковалентные (сильные) Дисульфидные - между остатками цистеина каждой из контактирующих поверхностей разных субъединиц

Особенности структурной организации некоторых фибриллярных белков

Структурная организация фибриллярных белков имеет ряд особенностей по сравнению с глобулярными белками. Эти особенности можно проследить на примере кератина, фиброина и коллагена. Кератины существуют в α- и β-конформациях. α-Кератины и фиброин имеют слоисто-складчатую вторичную структуру, однако в кератине цепи параллельны, а в фиброине антипараллельны (см. рис. 3); кроме того, в кератине имеются межцепочечные дисульфидные связи, а у фиброина они отсутствуют. Разрыв дисульфидных связей приводит к разъединению полипептидных цепей в кератинах. Напротив, образование максимального числа дисульфидных связей в кератинах путем воздействия окислителей создает прочную пространственную структуру. Вообще у фибриллярных белков в отличие от глобулярных порой трудно строго разграничить разные уровни организации. Если принять (как для глобулярного белка), что третичная структура должна образовываться путем укладки в пространстве одной полипептидной цепи, а четвертичная - нескольких цепей, то в фибриллярных белках уже при формировании вторичной структуры участвует несколько полипептидных цепей. Типичным примером фибриллярного белка является коллаген, который относится к самым распространенным белкам организма человека (около 1/3 от массы всех белков). Он содержится в тканях, обладающих высокой прочностью и малой растяжимостью (кости, сухожилия, кожа, зубы и т. д.). В коллагене треть аминокислотных остатков приходится на глицин, а около четверти или чуть более - на пролин или гидроксипролин.

Изолированная полипептидная цепь коллагена (первичная структура) похожа на ломаную линию. Она содержит около 1000 аминокислот и имеет молекулярную массу порядка 10 5 (рис. 5, а, б). Полипептидная цепь построена из повторяющейся тройки аминокислот (триплет) следующего состава: гли-А-В, где А и В - любые, кроме глицина, аминокислоты (чаше всего пролин и гидроксипролин). Полипептидные цепи коллагена (или α-цепи) при формировании вторичной и третичной структур (рис. 5, в и г) не могут давать типичных α-спиралей, имеющих винтовую симметрию. Этому мешают пролин, гидроксипролин и глицин (антиспиральные аминокислоты). Поэтому три α-цепи образуют как бы скрученные спирали подобно трем нитям, обвивающим цилиндр. Три спиральные α-цепи формируют повторяющуюся структуру коллагена, которая называется тропоколлагеном (рис. 5, г). Тропоколлаген по своей организации является третичной структурой коллагена. Плоские кольца пролина и оксипролина, регулярно чередующиеся вдоль цепи, придают ей жесткость, как и межцепочечные связи между α-цепями тропоколлагена (поэтому коллаген устойчив к растяжению). Тропоколлаген является, по существу, субъединицей фибрилл коллагена. Укладка тропоколлагеновых субъединиц в четвертичную структуру коллагена происходит ступенеобразно (рис. 5, д).

Стабилизация структур коллагена происходит за счет межцепочечных водородных, ионных и ван-дер-ваальсовых связей и небольшого количества ковалентных связей.

α-Цепи коллагена имеют разное химическое строение. Различают α 1 -цепи разных видов (I, II, III, IV) и α 2 -цепи. В зависимости от того, какие α 1 - и α 2 -цепи участвуют в образовании трехцепочечной спирали тропоколлагена, различают четыре типа коллагена:

  • первый тип - две α 1 (I) и одна α 2 -цепи;
  • второй тип - три α 1 (II)-цепи;
  • третий тип - три α 1 (III)-цепи;
  • четвертый тип - три α 1 (IV)-цепи.

Наиболее распространен коллаген первого типа: он содержится в костной ткани, коже, сухожилиях; коллаген второго типа содержится в хрящевой ткани и т. д. В одном виде ткани могут быть разные типы коллагена.

Упорядоченная агрегация коллагеновых структур, их жесткость и инертность обеспечивают высокую прочность коллагеновых волокон. Коллагеновые белки содержат также углеводные компоненты, т. е. являются белок-углеводными комплексами.

Коллаген - внеклеточный белок, который образуется клетками соединительной ткани, входящей во все органы. Поэтому с повреждением коллагена (или нарушением его образования) возникают множественные нарушения опорных функций соединительной ткани органов.

Страница 3 всего страниц: 7

Белки — высокомолекулярные органические соединения, состоящие из остатков α-аминокислот.

В состав белков входят углерод, водород, азот, кислород, сера. Часть белков образует комплексы с другими молекулами, содержащими фосфор, железо, цинк и медь.

Белки обладают большой молекулярной массой: яичный альбумин — 36 000, гемоглобин — 152 000, миозин — 500 000. Для сравнения: молекулярная масса спирта — 46, уксусной кислоты — 60, бензола — 78.

Аминокислотный состав белков

Белки — непериодические полимеры, мономерами которых являются α-аминокислоты . Обычно в качестве мономеров белков называют 20 видов α-аминокислот, хотя в клетках и тканях их обнаружено свыше 170.

В зависимости от того, могут ли аминокислоты синтезироваться в организме человека и других животных, различают: заменимые аминокислоты — могут синтезироваться; незаменимые аминокислоты — не могут синтезироваться. Незаменимые аминокислоты должны поступать в организм вместе с пищей. Растения синтезируют все виды аминокислот.

В зависимости от аминокислотного состава, белки бывают: полноценными — содержат весь набор аминокислот; неполноценными — какие-то аминокислоты в их составе отсутствуют. Если белки состоят только из аминокислот, их называют простыми . Если белки содержат помимо аминокислот еще и неаминокислотный компонент (простетическую группу), их называют сложными . Простетическая группа может быть представлена металлами (металлопротеины), углеводами (гликопротеины), липидами (липопротеины), нуклеиновыми кислотами (нуклеопротеины).

Все аминокислоты содержат : 1) карбоксильную группу (-СООН), 2) аминогруппу (-NH 2), 3) радикал или R-группу (остальная часть молекулы). Строение радикала у разных видов аминокислот — различное. В зависимости от количества аминогрупп и карбоксильных групп, входящих в состав аминокислот, различают: нейтральные аминокислоты , имеющие одну карбоксильную группу и одну аминогруппу; основные аминокислоты , имеющие более одной аминогруппы; кислые аминокислоты , имеющие более одной карбоксильной группы.

Аминокислоты являются амфотерными соединениями , так как в растворе они могут выступать как в роли кислот, так и оснований. В водных растворах аминокислоты существуют в разных ионных формах.

Пептидная связь

Пептиды — органические вещества, состоящие из остатков аминокислот, соединенных пептидной связью.

Образование пептидов происходит в результате реакции конденсации аминокислот. При взаимодействии аминогруппы одной аминокислоты с карбоксильной группой другой между ними возникает ковалентная азот-углеродная связь, которую и называют пептидной . В зависимости от количества аминокислотных остатков, входящих в состав пептида, различают дипептиды, трипептиды, тетрапептиды и т.д. Образование пептидной связи может повторяться многократно. Это приводит к образованию полипептидов . На одном конце пептида находится свободная аминогруппа (его называют N-концом), а на другом — свободная карбоксильная группа (его называют С-концом).

Пространственная организация белковых молекул

Выполнение белками определенных специфических функций зависит от пространственной конфигурации их молекул, кроме того, клетке энергетически невыгодно держать белки в развернутой форме, в виде цепочки, поэтому полипептидные цепи подвергаются укладке, приобретая определенную трехмерную структуру, или конформацию. Выделяют 4 уровня пространственной организации белков .

Первичная структура белка — последовательность расположения аминокислотных остатков в полипептидной цепи, составляющей молекулу белка. Связь между аминокислотами — пептидная.

Если молекула белка состоит всего из 10 аминокислотных остатков, то число теоретически возможных вариантов белковых молекул, отличающихся порядком чередования аминокислот, — 10 20 . Имея 20 аминокислот, можно составить из них еще большее количество разнообразных комбинаций. В организме человека обнаружено порядка десяти тысяч различных белков, которые отличаются как друг от друга, так и от белков других организмов.

Именно первичная структура белковой молекулы определяет свойства молекул белка и ее пространственную конфигурацию. Замена всего лишь одной аминокислоты на другую в полипептидной цепочке приводит к изменению свойств и функций белка. Например, замена в β-субъединице гемоглобина шестой глутаминовой аминокислоты на валин приводит к тому, что молекула гемоглобина в целом не может выполнять свою основную функцию — транспорт кислорода; в таких случаях у человека развивается заболевание — серповидноклеточная анемия.

Вторичная структура — упорядоченное свертывание полипептидной цепи в спираль (имеет вид растянутой пружины). Витки спирали укрепляются водородными связями, возникающими между карбоксильными группами и аминогруппами. Практически все СО- и NН-группы принимают участие в образовании водородных связей. Они слабее пептидных, но, повторяясь многократно, придают данной конфигурации устойчивость и жесткость. На уровне вторичной структуры существуют белки: фиброин (шелк, паутина), кератин (волосы, ногти), коллаген (сухожилия).

Третичная структура — укладка полипептидных цепей в глобулы, возникающая в результате возникновения химических связей (водородных, ионных, дисульфидных) и установления гидрофобных взаимодействий между радикалами аминокислотных остатков. Основную роль в образовании третичной структуры играют гидрофильно-гидрофобные взаимодействия. В водных растворах гидрофобные радикалы стремятся спрятаться от воды, группируясь внутри глобулы, в то время как гидрофильные радикалы в результате гидратации (взаимодействия с диполями воды) стремятся оказаться на поверхности молекулы. У некоторых белков третичная структура стабилизируется дисульфидными ковалентными связями, возникающими между атомами серы двух остатков цистеина. На уровне третичной структуры существуют ферменты, антитела, некоторые гормоны.

Четвертичная структура характерна для сложных белков, молекулы которых образованы двумя и более глобулами. Субъединицы удерживаются в молекуле благодаря ионным, гидрофобным и электростатическим взаимодействиям. Иногда при образовании четвертичной структуры между субъединицами возникают дисульфидные связи. Наиболее изученным белком, имеющим четвертичную структуру, является гемоглобин . Он образован двумя α-субъединицами (141 аминокислотный остаток) и двумя β-субъединицами (146 аминокислотных остатков). С каждой субъединицей связана молекула гема, содержащая железо.

Если по каким-либо причинам пространственная конформация белков отклоняется от нормальной, белок не может выполнять свои функции. Например, причиной «коровьего бешенства» (губкообразной энцефалопатии) является аномальная конформация прионов — поверхностных белков нервных клеток.

Свойства белков

Аминокислотный состав, структура белковой молекулы определяют его свойства . Белки сочетают в себе основные и кислотные свойства, определяемые радикалами аминокислот: чем больше кислых аминокислот в белке, тем ярче выражены его кислотные свойства. Способность отдавать и присоединять Н + определяют буферные свойства белков ; один из самых мощных буферов — гемоглобин в эритроцитах, поддерживающий рН крови на постоянном уровне. Есть белки растворимые (фибриноген), есть нерастворимые, выполняющие механические функции (фиброин, кератин, коллаген). Есть белки активные в химическом отношении (ферменты), есть химически неактивные, устойчивые к воздействию различных условий внешней среды и крайне неустойчивые.

Внешние факторы (нагревание, ультрафиолетовое излучение, тяжелые металлы и их соли, изменения рН, радиация, обезвоживание)

могут вызывать нарушение структурной организации молекулы белка. Процесс утраты трехмерной конформации, присущей данной молекуле белка, называют денатурацией . Причиной денатурации является разрыв связей, стабилизирующих определенную структуру белка. Первоначально рвутся наиболее слабые связи, а при ужесточении условий и более сильные. Поэтому сначала утрачивается четвертичная, затем третичная и вторичная структуры. Изменение пространственной конфигурации приводит к изменению свойств белка и, как следствие, делает невозможным выполнение белком свойственных ему биологических функций. Если денатурация не сопровождается разрушением первичной структуры, то она может быть обратимой , в этом случае происходит самовосстановление свойственной белку конформации. Такой денатурации подвергаются, например, рецепторные белки мембраны. Процесс восстановления структуры белка после денатурации называется ренатурацией . Если восстановление пространственной конфигурации белка невозможно, то денатурация называется необратимой .

Функции белков

Функция Примеры и пояснения
Строительная Белки участвуют в образовании клеточных и внеклеточных структур: входят в состав клеточных мембран (липопротеины, гликопротеины), волос (кератин), сухожилий (коллаген) и т.д.
Транспортная Белок крови гемоглобин присоединяет кислород и транспортирует его от легких ко всем тканям и органам, а от них в легкие переносит углекислый газ; в состав клеточных мембран входят особые белки, которые обеспечивают активный и строго избирательный перенос некоторых веществ и ионов из клетки во внешнюю среду и обратно.
Регуляторная Гормоны белковой природы принимают участие в регуляции процессов обмена веществ. Например, гормон инсулин регулирует уровень глюкозы в крови, способствует синтезу гликогена, увеличивает образование жиров из углеводов.
Защитная В ответ на проникновение в организм чужеродных белков или микроорганизмов (антигенов) образуются особые белки — антитела, способные связывать и обезвреживать их. Фибрин, образующийся из фибриногена, способствует остановке кровотечений.
Двигательная Сократительные белки актин и миозин обеспечивают сокращение мышц у многоклеточных животных.
Сигнальная В поверхностную мембрану клетки встроены молекулы белков, способных изменять свою третичную структуру в ответ на действие факторов внешней среды, таким образом осуществляя прием сигналов из внешней среды и передачу команд в клетку.
Запасающая В организме животных белки, как правило, не запасаются, исключение: альбумин яиц, казеин молока. Но благодаря белкам в организме могут откладываться про запас некоторые вещества, например, при распаде гемоглобина железо не выводится из организма, а сохраняется, образуя комплекс с белком ферритином.
Энергетическая При распаде 1 г белка до конечных продуктов выделяется 17,6 кДж. Сначала белки распадаются до аминокислот, а затем до конечных продуктов — воды, углекислого газа и аммиака. Однако в качестве источника энергии белки используются только тогда, когда другие источники (углеводы и жиры) израсходованы.
Каталитическая Одна из важнейших функций белков. Обеспечивается белками — ферментами, которые ускоряют биохимические реакции, происходящие в клетках. Например, рибулезобифосфаткарбоксилаза катализирует фиксацию СО 2 при фотосинтезе.

Ферменты

Ферменты , или энзимы , — особый класс белков, являющихся биологическими катализаторами. Благодаря ферментам биохимические реакции протекают с огромной скоростью. Скорость ферментативных реакций в десятки тысяч раз (а иногда и в миллионы) выше скорости реакций, идущих с участием неорганических катализаторов. Вещество, на которое оказывает свое действие фермент, называют субстратом .

Ферменты — глобулярные белки, по особенностям строения ферменты можно разделить на две группы: простые и сложные. Простые ферменты являются простыми белками, т.е. состоят только из аминокислот. Сложные ферменты являются сложными белками, т.е. в их состав помимо белковой части входит группа небелковой природы — кофактор . У некоторых ферментов в качестве кофакторов выступают витамины. В молекуле фермента выделяют особую часть, называемую активным центром. Активный центр — небольшой участок фермента (от трех до двенадцати аминокислотных остатков), где и происходит связывание субстрата или субстратов с образованием фермент-субстратного комплекса. По завершении реакции фермент-субстратный комплекс распадается на фермент и продукт (продукты) реакции. Некоторые ферменты имеют (кроме активного) аллостерические центры — участки, к которым присоединяются регуляторы скорости работы фермента (аллостерические ферменты ).

Для реакций ферментативного катализа характерны: 1) высокая эффективность, 2) строгая избирательность и направленность действия, 3) субстратная специфичность, 4) тонкая и точная регуляция. Субстратную и реакционную специфичность реакций ферментативного катализа объясняют гипотезы Э. Фишера (1890 г.) и Д. Кошланда (1959 г.).

Э. Фишер (гипотеза «ключ-замок») предположил, что пространственные конфигурации активного центра фермента и субстрата должны точно соответствовать друг другу. Субстрат сравнивается с «ключом», фермент — с «замком».

Д. Кошланд (гипотеза «рука-перчатка») предположил, что пространственное соответствие структуры субстрата и активного центра фермента создается лишь в момент их взаимодействия друг с другом. Эту гипотезу еще называют гипотезой индуцированного соответствия .

Скорость ферментативных реакций зависит от: 1) температуры, 2) концентрации фермента, 3) концентрации субстрата, 4) рН. Следует подчеркнуть, что поскольку ферменты являются белками, то их активность наиболее высока при физиологически нормальных условиях.

Большинство ферментов может работать только при температуре от 0 до 40 °С. В этих пределах скорость реакции повышается примерно в 2 раза при повышении температуры на каждые 10 °С. При температуре выше 40 °С белок подвергается денатурации и активность фермента падает. При температуре, близкой к точке замерзания, ферменты инактивируются.

При увеличении количества субстрата скорость ферментативной реакции растет до тех пор, пока количество молекул субстрата не станет равным количеству молекул фермента. При дальнейшем увеличении количества субстрата скорость увеличиваться не будет, так как происходит насыщение активных центров фермента. Увеличение концентрации фермента приводит к усилению каталитической активности, так как в единицу времени преобразованиям подвергается большее количество молекул субстрата.

Для каждого фермента существует оптимальное значение рН, при котором он проявляет максимальную активность (пепсин — 2,0, амилаза слюны — 6,8, липаза поджелудочной железы — 9,0). При более высоких или низких значениях рН активность фермента снижается. При резких сдвигах рН фермент денатурирует.

Скорость работы аллостерических ферментов регулируется веществами, присоединяющимися к аллостерическим центрам. Если эти вещества ускоряют реакцию, они называются активаторами , если тормозят — ингибиторами .

Классификация ферментов

По типу катализируемых химических превращений ферменты разделены на 6 классов:

  1. оксиредуктазы (перенос атомов водорода, кислорода или электронов от одного вещества к другому — дегидрогеназа),
  2. трансферазы (перенос метильной, ацильной, фосфатной или аминогруппы от одного вещества к другому — трансаминаза),
  3. гидролазы (реакции гидролиза, при которых из субстрата образуются два продукта — амилаза, липаза),
  4. лиазы (негидролитическое присоединение к субстрату или отщепление от него группы атомов, при этом могут разрываться связи С-С, С-N, С-О, С-S — декарбоксилаза),
  5. изомеразы (внутримолекулярная перестройка — изомераза),
  6. лигазы (соединение двух молекул в результате образования связей С-С, С-N, С-О, С-S — синтетаза).

Классы в свою очередь подразделены на подклассы и подподклассы. В действующей международной классификации каждый фермент имеет определенный шифр, состоящий из четырех чисел, разделенных точками. Первое число — класс, второе — подкласс, третье — подподкласс, четвертое — порядковый номер фермента в данном подподклассе, например, шифр аргиназы — 3.5.3.1.

    Перейти к лекции №2 «Строение и функции углеводов и липидов»

    Перейти к лекции №4 «Строение и функции нуклеиновых кислот АТФ»